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An extension of the Roe linearization method to nonideal gases is described and
applied to the particular case of the van der Waals gas. A supplementary relation
connecting the thermodynamic variables is introduced to decouple the evaluation
of the intermediate velocity and total specific enthalpy from the determination of
the intermediate density, needed in the Jacobian matrix of the linearization due to
the general thermodynamic character of the gas. The density value is obtained by
solving the supplementary equation, which involves the Roe average of velocity and
enthalpy, and that in the case of the polytropic van der Waals gas is a third-order
algebraic equation. Numerical results are shown including classical and nonclassical
behaviour in one-dimensional shock tube problems. 2002 Eisevier science
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1. INTRODUCTION

The computation of compressible flows of a gas described by the van der Waals equa
of state is a very active research areain the study of dense gas near the liquid—vapor satul
curve. In particular, the van der Waals gas is often taken as a simple model of BZT (Bef
Zel'dovich, and Thompson) fluid to investigate negative shock waves and other phenom
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ROE LINEARIZATION FOR THE VAN DER WAALS GAS 51

related to negative nonlinearity. Some commercially available heat transfer fluids such as
instance, FC-71 ({gF3gN), FC-72 (GF14), PP9 (G1F20), or PP11 (G4F24) are believed to
possibly exhibit nonclassical waves near the liquid—vapor saturation curve. This anomal
behavior occurs when thiendamental derivative of gas dynamicgroduced by Bethe
[4]

def EBZP(S,v) BP(S,v)’ (1.1)
2 2

g(37 U) = - v

with P, s, andv denoting pressure, entropy per unit mass and specific volume, respectiv
becomes negative. Sing® (s, v)/dv < 0 for thermodynamic stability, the negative sign of
G is associated with regions of the flow field in which the isentropes in the volume—press
plane are not convex; therefore, the polytropic ideal gas approximation, which allows
convex isentropes only, is no longer acceptable. A flow field in widi¢t) v) becomes
negative results into a loss of the genuinely nonlinear character of acoustic waves and
lead to the formation of negative or mixed waves as described in the fundamental pape
Menikoff and Plohr [21]; a flow regime of this kind is said to bdense gas regime

Mixed and split waves may also be formed—irrespective of the sigii-efvhen the
fluid undergoes a phase change because of the kink of the isentropes at the phase trar
boundary. However, the study of these two-phase phenomena falls outside the scope ¢
present work.

The existence of mixed wavesinthe dense gas regime does not allow a direct use of mc
the standard numerical techniques for solving the compressible Euler equations, which
developed to deal with classical wave structures. Moreover, if an artificial viscosity mett
is employed, care must be taken in the selection of the proper trigger for the numer
dissipation operator; in fact, standard sensors based on the sign of pressure jumps me
to detect a nonclassical isentropic compression and may consequently introduce a too-
numerical dissipation.

In the framework of numerical schemes for the Euler equations for dense gases, diffe
approaches have been followed. Argrow [2] used a predictor—corrector scheme base
the Davis flux limited method [9] for the van der Waals gas, being mainly interested
the evaluation of more refined gas models. Rider and Bates [26] developed a Rien
solver with an explicit treatment of the nonconvexity of the isentropic curvesleMand
\VoI3 [24] opened the way to the use the standard Godunov method by developing an €
Riemann solver which takes into account nonclassical gas behavior. In the present wo
new method is presented, which extends the upwind scheme proposed by Roe [27] fo
ideal polytropic gas to dense gas models in general and to the polytropic van der Waals
in particular.

It is well known that the linearization procedure of Roe’s scheme is not uniquely det
mined when a real gas equation of state is taken into account. Most of the formulati
of Roe’s method developed to deal with a general equation of state [1, 7, 10, 12, 19,
may be described as linearizations in quasi-Jacobian form [23], where the thermodyne
pressure derivatives are considered as additional unknowns that provide sufficient dec
of freedom to make the solution of the linearization problem unique. The proposed metl
follows a different approach, in which a strictly Jacobian form is retained—thus ensuri
the hyperbolic character of the linearized problem—uwhile the density is raised to the r
of the required additional unknown.
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This paper is organized as follows. In Section 2, the ideal and van der Waals gas mo
are briefly recalled. In Section 3, the Euler equations for a general (possibly nonide
gas are presented, and the influence of the fundamental derivative on the propertie
characteristic fields is discussed. In Section 4, the standard Roe linearization for the idea
with constant specific heats (polytropic) is recalled, and extensions to other gas models
briefly described. In Section 5, the proposed linearization procedure is described discus
both its reduced form for a possibly nonpolytropic gas and its general form for nonide
gases. In Section 6, the linearization procedure is applied to the polytropic van der W
gas, for which numerical results are given in Section 7. In the appendices, the det
of the solution of the linearization problem according to the proposed formulation &
given.

2. THE VAN DER WAALS MODEL OF DENSE GASES

In this section, the basic thermodynamic properties of the ideal gas and of the van
Waals gas are recalled. In particular, the expression of the fundamental deidatiiese
negative sign is associated with anomalous behaviour, is given.

As is well known, for arideal gaswith only a chemical species, theguation of state
(EOS) for the pressurk is

m1w=s; (2.1)

whereT is the temperature; is the specific volume, anR def R/uo is a gas-dependent
constantR is the universal gas constant, amglis the molecular weight.

To have a complete description of the thermodynamic properties of the gas, a sec
EOS for the internal energy= e(T, v) is needed. This equation has to be compatible witt
(2.1), since both equations are a consequence of a single fundamental relatige, v),
wheres is the entropy per unit mass. The energy equation compatible with (2.1) is eas
seen to be of the form

e(T,v) = f(T),

wheref (T) is an arbitrary function, which is related to the heat capacity at constant volur
c, byc,(T) d=‘3f8e(T, v)/dT = f/(T); by thermodynamic stabilityf’(T) = ¢,(T) > O.

From a physical viewpoint, the form of the functidn(T) comes from the statistical
mechanics of the gas, including effects of its possible rotational and vibrational degree:
freedom (see Landau and Lifshitz [16]). In particular, if a classical (honquantum) mechani
treatment is assumed, is constant, as it is always the case for a monoatomic gas, and t
gas is said to bpolytropic. The resulting (complete) model pblytropic ideal gageads

RT
P(T,v) = —, e(T,v) =¢,T+e, (2.2)
v

whereg is the reference internal energy at zero temperature that will be neglected in
following, without loss of generality.

Let us now consider the fundamental derivative of gas dynagiidefined in (1.1).
For a polytropic ideal gas, the isentropes in thé plane, P/v’*! = constant, where
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8 = R/c,, have always a positive curvature, so tigat- 0 and therefore no anomalous
behavior can occur. The above can be proved by substituting the definition of the spee
soundc?(s, v) = —v2dP(s, v)/dv, into (1.1); namely,

v3 32P(s, v)
2c2 92

G(s,v) =

From the expression above and usit(p, v) = 8 exp[s(s — S)/R]/v**+?, the expression
of the fundamental derivative for a polytropic ideal assumes the constant value

aam=g+1>q (2.3)

which is positive due to thermodynamic stabiliy£ R/c, > 0).

The ideal model of dimensionless colliding atoms or molecules has been extended in 1
by J. D. van der Waals [32] to take into account repulsive covolume effects and attrac
intermolecular forces. The resulting model leads to a pressure EOS in the form

RT a
P(T,v) =
v

-2 (2.4)

wherea andb are two (gas-dependent) constants, functions of the strength of intermc
cular forces (only pair interactions of molecules are considered), and of the volume
the molecules, respectively. Fors- b andP > a/v?, i.e., far from the saturation curve,
the ideal gas model is recovered. The energy EOS compatible with (2.4) is found to
in the form [6]

e(T.v) = f(T)—g,

where againf (T) is an arbitrary function but for the thermodynamic stability condition
f’(T)=c,(T) > 0.Here, werestrict our analysis to the polytropic van der Waals gas mod
defined by setting (T) = ¢, T, with ¢, a known constant, so that

RT a
eT,v)=———, (2.5)
1) v
where againd = R/c,. For completeness, we recall the expression of the fundamen

relation for the polytropic van der Waals gas, hamely,

s(e,v) = RIn {(v —b) (e+ E) 5] + s, (2.6)
v

in which g is a constant. From (2.4) and (2.6), we can write the EOS for the pressure &
function of the specific entropy and specific volume, namely,

expli(s—s)] a
We notice in passing that the isentropes, which can be obtained from (2.7) by saking
constant, reduce to the ones obtained in the polytropic ideal cas® hi€}! = constant,
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FIG. 1. Isentropesinthe-P plane for a van der Waals gas with= 0.0125. The nonconvex region is located
between th&/ = 0 locus and the saturation curve. The critical point C has coordimates3b, P. = a/27b?.

in the limitv — oo. Furthermore, in the limiéd — 0, the isentropes are coincident with the
van der Waals isotherms.

From (2.4), the fundamental derivative of the van der Waals gas is easily obtair
as

G+ +2 08 o

2§+ nEy 2

G(P,v) E'G(s(P,v). v) = (2.8)

which has been expressei terms of the pressure and specific volume for later conve
nience.

For the polytropic van der Waals gas a finite region of negaliveay exist [29] in the
vapor phase near the saturation curve (see Fig. 1). The ¢(beu§, the boundary between
the classical and nonclassical regimes, can be found by setting the numerator of (2.¢
zero and solving for the pressukreto find

a 6 b)?
szo(v) = ? [(84-1)(84-2) (1 - U> - 1:| . (29)

In the limit§ — O, i.e,c, — oo, the locusg = 0 is a line in the plane-P starting from
the critical point of coordinates{ = 3b, P, = a/27b?) and delimiting, together with the

1 Here and in the following, with a slight abuse of mathematical notation, we will denote different functions
a given physical quantity in terms of different variables by one and the same symbol, as it is a standard pra
in thermodynamic formulae.
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saturation curve, a finite region of negativén the vapor phase. The extent of the nonclas
sical region diminishes asincreases, and reduces to a single point on the saturation cul
of coordinates (#1843, 0.888P.) for § = §* = 1/16.66 = 0.06, as given by Thompson
and Lambrakis [30]. Otherwise, #f > §*, no anomalous behavior can be observed in th
vapor phase. In Fig. 1, the nonclassical region is showa £er0.0125.

Thanks to this simple algebraic form, the polytropic van der Waals gas has been often
as a qualitative model to study the behavior of negative nonlinearities near the satura
curve [2, 3,5, 8, 22, 24]. Nevertheless, more accurate models are available and are curr
employed whenever a quantitative analysis is needed; see, for instance, the works of |
Prausnitz and Poling [25] and of Martin and Hou [20].

3. EULER EQUATIONS FOR NONIDEAL GASES

We now consider a system of conservation laws in one spatial dimension for the ve
unknownw(x, t) € RP, x e R, t > 0, in the form

ow  of (w)
g =0, 3.1

ot + X (31)
where the fluxf (w) : RP — RP is a given vector function. For the one-dimensional Eule
equations of gasdynamics of interest here, we have

2 T
f(w) = (m, % + M(w), r;(Et+1'I(w))) , (3.2)

wherew = (p, m, EYT € @ ¢ [RT x R x R] is the vector of the conservative variables
mass, momentum, and total (internal and kinetic) energy per unit volume. From the E
P = P(E, p), whereE is the internal energy per unit volume, we have introduced th
pressure functioim terms of the conservative variables, namely,

m2
I (w) dzefP<Et—,,0>. (3.3)
2p
For later convenience, we recall here the Jacobian matrix of theAlux) = of (w) /0w,
namely,

0 1 0
Atw) = — 1+ I (w) 20 1 Mim(w) Me:(w)

% (_w + Hp(w)) w + %Hm(w) %(1+ e (w))

where we used the standard notati, (w) d:‘*fan(w)/awk, k=1,2 3. The partial
derivatives ofP(E, p) can be easily obtained from thoseléfw) by means of the chain
rule as

aP(E, p) AP(E, p) 1m?
BT = HE[(U}), T = Hp(ﬂ)) — E?HB(U})’ (34)
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where the variabl& on the left-hand sides is to be expressed in terms of the conservati
variablesw through the relatiole = E(w) = E' — m?/(2p). Moreover,P(E, p) being a
function of only two variables, the following relation holds:

M (w) = —%nEt(w). (3.5)

Let us briefly recall some properties of the characteristic fields of the Euler equatic
in one dimension which are peculiar to the dense gas regime. For a complete descrip
we refer to the review of Menikoff and Plohr [21] and to the recent work ol and
Vo3 [24]. For thekth characteristic fields, we introduce thenlinearity factor

on(w) BV dp(w) - ry(w). (3.6)

wherelrg(w) = m/p + sxC(w), ex = k — 2, k = 1, 2, 3, andry(w) are the eigenvalues and
the eigenvectors of the Jacobian matkiéw), respectivelyc(w) is the speed of sound and
Vo £9/0w.

As is well known, the value of the nonlinearity parameter is of the utmost importance
classifying characteristic fields. Tléh characteristic field is said to tiaearly degenerate
if ax(w) =0Vw € 2, while if ax(w) # 0 Vw € 2, the characteristic field is said to be
genuinely nonlineafsee, for instance, Godlewski and Raviart [11]). Let us now clarify the
consequences of the sign of the fundamental derivative in the definition of the character

fields, by writing the nonlinearity factor in the equivalent form [21]
ax(w) = &G (w)c(w)p, (3.7)

where again the notatiafi(w) implies the change of variablés, v) — w. In the theory

of ideal polytropic gaseg; = const> 0, so that both the first and the third fields &
—1, e3 = 1) are genuinely nonlinear and classical compressive shocks and rarefaction 1
are observed. The second characteristic figld{ 0) is instead linearly degenerate, and itis
associated with contact discontinuities. Such a hyperbolic system, for which characteri
fields are either genuinely nonlinear or linearly degenerate, is caltehzexhyperbolic
system.

On the contrary, in the dense gas regime in the Igus0 (Fig. 1), we havey (w) =
0,k =1, 2, 3, and the genuine nonlinearity is lost. Consequently, the hyperbolic syste
is nonconvexand nonclassical negative or mixed waves can possibly occur. An exam|
is given in Fig. 2, where the density distribution resulting from a shock tube problem
shown together with the locus of the gas states inttieplane. Both left and right initial
states lie in the positivg region, but during the time evolution the gas states cross tt
G = 0 boundary. Together with a classical compressive shock and a contact discontin
propagating toward the low pressure side, the flow is characterized by a mixed rarefac
wave where the rarefaction fan moving toward the pressure side is connected with a
efaction shock. For the description of the mathematical difficulties arising from consideri
this kind of nonclassical Riemann problems and for their solution, we refer again to [Z
and [24].
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FIG. 2. Example of a mixed rarefaction wave. Density distribution (left) and gas states wEhelane
(right). The dotted line is the boundary of the nonclassical region.

4. ROE LINEARIZATION

As is well known, Roe’s Approximate Riemann Solver (ARS) is a Godunov-type scher
based on a local linearization of the considered hyperbolic system of conservation Iz
devised in order to avoid the exact solution of Riemann problems [27]. For a detailed ¢
cription of the method (and of its higher order implementation), we refer to LeVeque’s [1
and Godlewski and Raviart’s [11] monographs.

Let us consider the solution of the Riemann problem associated with the left and ri
statesw, andw,, namely,

ow N of (w)
ot ax

w(X,0) = {

0,

w, X<0
w, X>0

by means of the Roe linearization technique. The conservation law is approximated t
linearized equivalent substitute as

Jw . ow
W'{'A (’l.l)g,wr)a—x—o, (41)

where a suitable matri&* (w,, w;) of dimensionp x p (function of the left and right state
w, andw;,) has been introduced, according to the following prescriptions:
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DEFINITION 4.1. Matrix A*(wg, wy) is called a Roe linearization of the hyperbolic
system with fluX (w) and Jacobian matri&(w) = of (w)/dwif (w,, wy) — A*(w,, wy)
is a mapping fronRP x RP into the set ofp x p matrices with the following properties:

(i) ConservationA* (wg, wy)(wy — wp) = f(wy) — f(wy),

(ii) Hyperbolicity: A*(w,, wy) has real eigenvalues and a corresponding set of eige
vectors that form a basis &,

(iii) ConsistencyA*(w,, wy) — A(w) asw, andw, — w.

In principle, the determination of tHeoe matrixA*(w,, w;) satisfying the conditions
above requires the definition of all ipsx p elements’; (w, wr), which are related by the
p quantitative conditions stated in (i), assuming that conditions (ii) and (iii) are satisfied.
the p conditions are all nontrivial, the general solution for the linearization matrix will be
(p? — p)-parameter family of solutions. In particular, for the Euler equations in one spati
dimension,p = 3, and we have a six-parameter family of solutions. In practice, to fulfil
conditions (ii) and (iii), it is convenient to properly select the form of matix In the
following sections, standard Roe matrices for the Euler equations are recalled for differ
gas models.

4.1. Roe Linearization for the Ideal Polytropic Gas

Originally, Roe ARS was formulated considering the Euler equations for a polytror
ideal gas through a suitable change of variables, i.e., the so-called parameter vector ti
formation [27]. In this case, the linearizing matrix is found to be equivalent to the Jacobi
matrix of the flux function evaluated at an intermediate stete,, w,), defined by Roe
averaged values of velocifiyand total specific enthal;ﬁ}, while no intermediate density is
needed in the evaluation of the Jacobian matrix due to the particular form of the equati
of state of the gas.

Denoting withA(w) the Jacobian matrix of the nonlinear hyperbolic system, a linearizin
matrix of the form

A*(wy, wr) = A(@(we, wr)) (4.2)
will be called hereinafter a linearization dacobian formFor an ideal polytropic gas, this
matrix can be defined in terms of only two variables, thanks to the first-order homogene
of the flux functionf (w). These two variables are typically chosen as the velocity and tot
specific enthalpy, so that

0 1 0
A*(wr, wy) = AP @G, hy = | (8 —2)02 80 8 . (43)
G(380% — ht) ht—502 (5 + 1)
Solving now the linearization problem implied by condition (i), which now reads
AP\(d, ht) (wr — wy) = T (wy) — f(wy),

we obtain the intermediate values of the velocity and total specific enthalpy, which are gi
by the celebrated expressions [27]:

Pl + /pru ﬁ_\/p_eh}ﬂr\/p_rh} 4.2)

0= =

NCRN RN
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For the solution of the linearization problem using the direct substitution procedure outlir
above, we refer, for example, to Mottugaal.[23] or to Guardonet al.[14].

4.2. Standard Extensions to Different Gas Models

To extend Roe solver to gas models different from the ideal polytropic one, several
proaches have been followed [1, 7, 10, 12, 19, 33]. It has been noticed [23] that all these
thods can be written so as to obtaiguasi-Jacobian fornfor the Roe matrix, in which the
original intermediate statﬂ(ﬁt) of Roe is augmented by additional unknowns, namely, th
pressure derivatives (either with respect to the conservative variables or with respec
two independent thermodynamic variables). The standard average for the velocity and
specific enthalpy can be recovered if the additional variables satisfy a linear relationship
will be given later on. The resultingxtendedntermediate state is not uniquely determinec
by applying the original parameter vector transformation and therefore, in most of th
extensions, a defined intermediate state is singled out by directly imposing an additic
constraint on the average pressure derivatives.

Let us consider the following quasi-Jacobian form of the Roe matrix, namely,

A*(wy, wy) = AY(@, ht, T, T, g
0 1 0
= | —0*+T11, 20+, Mg . (4.5)
G(fT, —hY Rt 4 Gfl, G+ fe)

This matrix is said to be in a quasi-Jacobian form since it is obtained from ragtx in
which the averaged quantitiﬁs,, I1m, andf1g: are no longer the partial derivativesiofw)
evaluated in some intermediate state, but only additional parameters of the lineariza
procedure. In other words, matr&™ is uniquely determined by specifying axtended
intermediate statdi( ht, ﬁp, I, [Tg). Assuming now the standard average (4.4) for the
velocity and total specific enthalpy, it can be shown [23] that the two nontrivial equatio
stemming from the imposition of condition (i) are I|nearly dependent and reduce to t
following single linear equation for the parametﬂ§ [ and g

,A0 + nAm+ Mg AE' = AP, (4.6)

whereA(-) = () — (-)¢. Therefore, the solution of the linearization problem in a quasi
Jacobian form is a two-parameter family of solutions. In practice, to enforce consister
relation (3.5) is imposed betweénIl,, andI1g:, to give the additional equation

My = —0lg, 4.7)

thus reducing the number of degrees of freedom to one. Different methods are obtal
according to different choices of the remaining parameter, as reviewed in [23].

The schemes based on the quasi-Jacobian form have proved successful in the co
tation of chemically reacting hypersonic flows and in different real gas applications.
the other hand, in our opinion, a drawback of these schemes lies in that the intermec
quantitiedT,, I, andiTg: are artificial unknowns not retaining their exact thermodynami
significance: as pointed out by Toumi [31], this may lead to inconsistencies whenever tt
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guantities are employed to derive other thermodynamic quantities such as, for exam
the speed of sound, which is needed to evaluate the eigenstructure of the linear sys
Moreover, in this approach conditions (ii) and (iii) still remain to be verified and in gener
their fulfillment will lead to additional constraints.

A noticeable exception is the work of Toumi [31], who, through a weak formulation c
the linearization problem and by using a parameter vector approach, was able to obte
simpler quasi-Jacobian form. In this approach the pressure derivatives are given in te
of an average Girieisen coefficient, which is the only additional parameter with respect
the Jacobian approach. The latter quantity, approximated by numerical quadrature in ¢
space, uniquely defines the Roe matrix, together witindht.

5. THE PROPOSED LINEARIZATION FOR NONIDEAL GASES

To overcome the difficulties highlighted in the previous section, we propose an extens
of Roe ARS based on a strictacobian form by choosingA* as the Jacobian matrix
A(w) = of (w)/dw to be evaluated in antermediate stat&® = @ (w,, w,) obtained from
condition (i), which therefore becomes

A (we, wr)) (wr — wy) = f(wr) — f(wy), (5.1)

and represents a systempéquations in thg unknownswy, 1 < k < p. Such a Jacobian
form ensures that the qualitative condition (ii) is automatically fulfilled and implies th:
condition (iii) now reads more simplyw(w,, w;) — w asw, andw, — w.

Let us now particularize system (5.1) to the Euler equations. In this case, the Roe me
A*(w, wy) = A(w(wy, wy)) reads

0 1 0

Add) = 1% + T, (@) 2 (1) Me: ()

D(-EEID 41, @) EH 4 M) DA+ e (@)

and the system (5.1) has three equations in the three unkrmvﬁm@. The first equation

of this system is identically satisfied\h = Am) so that there are only two nontrivial
equations and consequently the intermediate state is actually a one-parameter fami
solutions. The two nontrivial equations stemming from the system can be rearranged s
to put in evidence the pressure jump and the partial derivatives of the furi¢tian as

m 2 M m? .

—ap PEEI) BT a0 @y aw 62
o o P o p

:A(m(Et—}- n)),
0

where AP = IT(wy) — IT(w,). This is a system of two coupled equations in the thret
unknownsp’ m, Et.
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In the following sections, the solution of the linearization problem in Jacobian form w
be analyzed; a distinction will be made between flux functions homogeneous of degree
namely, under the hypothesis of gas ideality (Section 5.1), and flux functions stemm
from a general nonideal gas (Section 5.2).

5.1. Ideal Gases and Homogeneity

Let us consider the case of a flligw) homogeneous of degree one with respeawto
In this case, the equation system (5.1), which involves the evaluation of partial derivati
of f (w) only, can be written as a system in orly— 1 unknowns, the usual choice for
the Euler equationsp(= 3) being the velocity and total enthalpy per unit masshf).

As is well known [28], the above property 6fw) depends only on the thermodynamic
model employed: in particulaf,(w) is homogeneous of degree one if and only if the gas i
ideal, irrespective of its polytropic or nonpolytropic character. In this case, for any equat
of state P(E, p), compatible with the assumption of gas ideality, the intermediate sta
(@, ﬁt) turns out to be uniquely determined as solution of the system of two equations (5
Under the further assumption opalytropicgas,P(E, p) = § E and the unique solution is
provided by the so-called Roe average (4.4), which uniquely defines in (4.3), while
the intermediate stat@ 6f the conservative variables is defined up to an arbitrary densit
for example.

On the contrary, for aonpolytropiddeal gas, i.e., an ideal gas witmanlinearfunction
e= f(T), the intermediate state is still defined uniquely as the solution of system (5.
but in a way that in principle cannot be reduced to the Roe average (4.4) and that dep
on the form of the functiorf (T).

To conclude, we notice that the above holds also for gas models which differ from 1
ideal one by the occurrence of only an additive linear functigniothe EOSP = P(E, p),
since this dependency gnis eliminated by taking the derivative. This occurs for example
for the stiffened Guiheisen equation of state [21], namely,

P(E, p) = 8E + Cier(p — pren),

whereces andpres are constant reference values, and an EOS which is obtained by lineariz
a Gnineisen equation for a metal.

5.2. Nonideal Gases: An Equation for the Intermediate Density

Coming now to the nonideal gases of interest here, we propose to exploit the availz
degree of freedom of the one-parameter family of solutions of the linearization probl
by fixing the intermediate state to reduce the complexity of system (5.2). This can
achieved by augmenting system (5.2) with the introduction ofthgplementary equation
[14]

| Vo, I1(i) - Aw = AP, (5.3)

so that we obtain the system
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VoIl(®) - Aw = AP,
~ my my
m_ Vntw
N AR (5.4)
. ~ E!4-TT (wy) E!+T1(awy)
E' 4 M(@@) _ T
p N/ZE SN/

of three equations in the three unknow(asgh, E‘) = w. The augmented system (5.4) has
been presented in [14] and its derivation is detailed in Appendix A. By introducing tt
variables velocityu = m/p and total enthalpy per unit mas$ = (E! + IT(w))/p, that

is, through the change of variable = (o, m, EY) — v = (p, u, h'), the second and third
equations in (5.4) are solved to give explicit expressions for the intermediate velocity ¢
total enthalpy in the form

/il + /P A+
o= YU T VO g pr= YO VA (5.5)
N Pet+ /pr N PLF A/ Pr

exactly as in the case of the polytropic ideal gas, while the introduced supplement
equation, written in terms of the new vector unknowe= (p, u, ht), is found to be an
equation for the single unknown intermediate dengity ~

Summarizing, for any gas different from the ideal gas, the solution of the augmen
linearization problem is obtained from the Roe-averaged quantities in (5.5) and from
subsequent solution of the single equation

VI(w(p, G, ht) - Aw = AP (5.6)

for the unknowno™”

Let us now rewrite the supplementary equation (5.6) in a more convenient form. |
using AE! — AE = —%A(mz/p) and the fact that the intermediate velocitysatisfies
the following relation (from the momentum equation of the linearization problem, se
Appendix A):

m2
A(—) = —0%Ap + 20Am,
o

and by substituting relations (3.4) and (3.5) into Eq. (5.6), the supplementary equat
assumes the form

aP(E, 5 IP(E, 5
( p)AEJr ( p)Ap

= AP (5.7)
oE ap

having introduced the shorthan& = E(h, 5) = h — P(h, 5) and h = ht — @i2/2.
Equation (5.7) makes explicit that the supplementary equation has a mere ther

dynamic content. The complete system for the intermediate staté, i) now
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reads,

/Pele + /prur Fi_ V/Pehi+ oy
NN NN

IP(E,p) IP(E,p) (5.8)

i ¥ _

oE AE + o Ap = AP,

E+P(ES) _pt_ @
P - 2

U=

where the definition of the internal ener§yhas been written explicitly to have a closed
system.

We want to stress again the fact that in the present method no averaging of the pres
derivatives is introduced, since thainalytical expressionare evaluated exactly at the
intermediate state, which is completely determined. Although the supplementary ec
tion (5.3) takes a form similar to condition (4.6) needed in the quasi-Jacobian linearizati
the two procedures are basically different. In fact, in a Roe linearization in quasi-Jacok
form, the extended intermediate state is found by imppsia constraint on thenknown
average derivatives of the pressure and the resulting linearization depends on the (arbit
average chosen for the pressure derivatives themselves. On the contrary, the suppleme
equation introduced in the present approach selects a uniquithih the one-parameter
family of intermediate states and, at the same time, uncouples the determination of the
knowns intermediate velocity and enthalpy from the evaluation of the intermediate densit

6. INTERMEDIATE DENSITY FOR THE VAN DER WAALS GAS

The linearization procedure outlined in the previous section is now specialized to
case of the polytropic van der Waals gas. The pressure EOS reads

E + ap?
P(E.p)=3$ — ap?, (6.1)
1—bp
from which we obtain
aP(E, p) ) AP(E, p) b(E — ap?) + 2ap
= , =3 — 2ap. 6.2
0E 1-Dp ap (1—bp)? a0 (6.2)

The algebraic form of the van der Waals thermodynamics allows us to obtain the expl
expression of the energy in terms of the two varialtles) as
_ (1—bp)ph—2a8p%

and solve the linearization problem by substitutiBg= E(h, p) in the second part of
system (5.8), to obtain

aP(E(ﬁ,m,ﬁ)AH IP(E(h, NN
9E 90 P

— AP, (6.4)

with the understanding = ht — &,
By (6.2) and (6.3), Eq. (6.4) is found to be a third-order polynomial in the intermedia
density ratiar = g/pc = 3bg, in the form [13],

r’+Ar24+Br+C=0, (6.5)
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with coefficients defined in terms of the left and right states as

pc AP
A= 2" _32+9),
6P, Ap (2+9)
Pe AP AE ~ (2 ’
B= 2 |-Q2+8)—+68( — —ht4+ — 9(1—6 6.6
2PJ(+)AP+<Ap )|+ )s (6.6)
3pc AP AE
C=_"22(0148)|— —85—|,
2Pc(+){Ap Ap]

wherep. and P, are the critical values of the density and pressure, respectively. Therefo
the supplementary equation can be solved analytically by standard formulae. The rele
real root is selected as the one lying within or closer to the intepyakj ]. In the numerical
experiments presented in the following section, this simple criterion has been found tc
suitable to single out the needed intermediate density.

In the particular case\p = 0, the supplementary equation (6.4) is linearpirard
gives

AE
r=3-3—, 6.7
AP (6.7)

the caseAp = 0 andA P = 0 being trivial since one hasp = AP =0= AE = 0andp”
is therefore arbitrary. We notice that in the lirhit> 0 the supplementary equation reduces
to a linear equation ip Whose solution is given by

ﬁ_p/d‘i‘pr
>

7. NUMERICAL RESULTS

The proposed linearization procedure has been applied to the solution of reference sl
tube problems for the Euler equations in one spatial dimension. First, we considered a
case proposed in [17] for the water vapor near the liquid—vapor saturation curve. Sinc
the van der Waals approximation of such a §as0.329 > §*, the fundamental derivative
g is always positive outside the two-phase region, and no anomalous behavior is obse
in the vapor phase. In the considered numerical experiment, the diaphragm is locate
x = 0.5 and separates the following constant initial states, made dimensionless by crit
values:

Pe U P, Ge Pr Uy P Gr
WV1l 101000 0O 160770 223946 059400 O 089570 136136

In Fig. 3, numerical solution of case WV1 is compared with the one obtained by the Da
method [9], which has been used, for example, by Argrow [2] for the computation of ti
nonclassical behavior of the van der Waals gas. The computations have been performec
a 400-point grid by means of a high-resolution flux-limiter method, which takes advanta
of the proposed linearization near discontinuities and uses a Lax—Wendroff scheme
smooth flow regions; see, for instance, LeVeque [18]. Results are very similar to those
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FIG. 3. Numerical solution of the Riemann problem for test case WV1. Solution at the dimensionless tir

t* = (t/L)(Ps/p)¥2 = 0.2, At* =1 x 1073,

the Davis method, although the present method achieves a slightly better resolution of

wave structure as can be appreciated in the enlargements of Fig. 4.

In Figs. 5-8 numerical results including nonclassical phenomena are reported. Tt
shock tube problems have been proposed by Argrow [2] to explore the nonclassical behe

Density
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1 A
0.95
0.9
0.85 N
0.8
0.1 0.2 0.3
X

FIG. 4. Enlargement of the density distribution for case WV1. Left: rarefaction wave. Center: contact discc

tinuity. Right: shock wave.
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FIG. 5. Numerical solution of the Riemann problem for test case DG1. Solution at the dimensionless til
t* =0.15 At* =5x 10,
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FIG. 6. Numerical solution of the Riemann problem for test case DG2. Solution at the dimensionless ti
t* = 0.45, At* = 1.5 x 1073,
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FIG. 7. Comparison of the proposed method and the method of Davis for the resolution of cases DG1
DG2.

of avan der Waals gas near the critical point, and are defined by the following dimension!
guantities:

P Ug Py Ge Pr Ur P Gr
DG1 1818 0 3000 4118 Q275 0 Q575 Q703
DG2 0879 0 1090 -0.031 0562 0O 0885 —4.016
DG3 0879 0 1090 -0.031 Q275 0 Q575 Q703

The numerical results are computed on a 400-point grid&vith0.0125, which corresponds
to a fluid with a large specific heat with respect to its molecular weight as, for instanc
PP10, GsF2, (§ = 0.0128).

The DGL1 case corresponds to the situation exemplified in Fig. 2, where the initial ¢
states belong to thg > 0 region but th&/ = 0 boundary in the-P plane is crossed during
the flow evolution. A mixed rarefaction wave is formed, composed by a transonic rarefact
fan connected to a rarefaction shock propagating to the right. This rarefaction shock oc
when theg values become negative. On the other hand, the compression shock propagse
toward the low pressure side satisfies the Rankine—Hugoniot conditions, and it is therefc
classical shock even if it connects two states with different sigh @his indicates that the
crossing of the&; = 0 boundary cannot be taken as a sufficient condition for the existen
of mixed waves.

The DG2 case is a typical example of nonclassical behavior, since the initial gas st:
belong entirely to the nonconvex region and moreover the fundamental derivative rems
negative in the whole flow field during the flow evolution. A rarefaction shock and a co
tinuous compression fan are observed in Fig. 6.
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t* =02, At* =1 x 1073,
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FIG. 9. Mixed rarefaction wave of case DG3 at tirtte= 0.48 on a 1000-node grid. Density profile (right)
and entropy difference 1000 (center and right). The entropy difference is defines{&sv)/s(T,, v,) — 1.

The comparison with Davis method yields very similar results also for the DG1 al
DG2 cases. Differences may be appreciated only locally on the wave resolution (Fig. 7).
expected, the proposed upwind scheme behaves better than the artificial viscosity schel
capturing contact discontinuities, which appear sharper using the proposed approach.
above becomes more evident by reducing the spatial resolution.

The last test case, DG3 (Fig. 8), presents however a subtle but important differe
between Davis and present results. This case has an initial left, high pressure state lyir
theG < 0 region, while the right state is well within the convex region. The gas expansi
starts as a rarefaction shock that turns into a small rarefaction fan ongetheboundary
is crossed. In Fig. 9, an enlargement of the mixed wave as computed by the Davis sch
and the present scheme is shown. The difference in the density profile can be expla
by examining the entropy production through the rarefaction shock. The Davis sche
computes a negative (nonphysical) entropy difference, while the present scheme is four
satisfy the entropy condition. As aresult, the isentropic rarefaction fan occurs along differ
isentropes for the two schemes, thus leading to different density profiles. Moreover, for
same reason, the speed of the rarefaction shock as computed by the present scheme is
than the one obtained from the Davis scheme.

Comparisons with other standard extensions of Roe scheme and, in particular, \
the one proposed in [33] showed almost no differences with present results. It could
possible that a different behavior between the present method and other extended
schemes may be found in the simulation of flow fields that include phase transition.
fact, as pointed out in [31], Roe linearizations based on the quasi-Jacobian form may bl
down in the two-phase region due to inconsistency among intermediate thermodyna
guantities.

As a final remark, we notice that LeVeque's entropy fix [18], originally considered i
the present scheme, has been found to fail in the presence of a negative/positive tran:
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G>0 G>0 G>0 /' G<o

FIG. 10. Density contours in the kinematic plane ) for classical (left) and nonclassical transonic rarefac-
tion.

rarefaction (case DG1). This difficulty is caused by the nonclassical character of the r:
faction waves in that Riemann problem (see Fig. 10), which is extraneous to LeVeqt
entropy fix developed for classical transonic rarefactions. The difficulty has been ea
circumvented by replacing LeVeque’s entropy fix with the standard entropy fix of Hart
and Hyman [15].

8. CONCLUSIONS

In the present work, the linearization procedure of Roe for the Euler equations has b
extended from the ideal gas to a gas governed by the van der Waals equations of state
proposed method assumes an intermediate state as the unknown of the linearization prc
and, differently from standard procedures for the ideal gas, requires the determinatio
anintermediate densitin addition to the intermediate velocity and total enthalpy of the
original method of Roe. Such a density is needed to evaluate the eigenstructure of
Jacobian matrix, due to the nonideal form of the equations of state employed. The choic
the Jacobian form ensures the automatic satisfaction of the consistency and hyperbo
properties of the scheme. Pressure derivatives with respect to the conservative varis
appearing in the Roe (Jacobian) matrix are not assumed to be additional unknowns,
are merely considered as functions of the intermediate state given by the variables der
velocity, and total specific enthalpy. The originality of the proposed method lies in t
introduction of a convenient supplementary condition which decouples the determinat
of the intermediate velocity and enthalpy—given by the standard Roe average—from
determination of the intermediate density. Thanks to the analytical form of the van der W
thermodynamics, a third-order algebraic equation for the intermediate density is obtair
which directly gives the solution of the linearization problem in terms of the Roe averag
velocity and total enthalpy and of the jumps in the density, pressure, and internal ene
per unit volume.

By virtue of the segregation of all the aspects dependent on the thermodynamic equat
of state into a single equation for the intermediate density, the present method car
easily extended to deal with more complex physical systems such as, for instance, acc
thermodynamic models for dense gases or chemically reacting gases in local thermodyn
equilibrium.
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APPENDIX A: SOLUTION OF THE LINEARIZATION PROBLEM

In this appendix, following [14], system (5.4) is derived from (5.2) by augmenting it witl
the supplementary equation (5.3). Particular cases in which the outlined solution bre
down due to the division of vanishing quantities are dealt with in the next section.

Let us first rewrite system (5.2), namely,

m 2 M m? .
(Ap)<§> — 2(Am)E + A(7) + (AP — V,I1(1) - Aw) =0

—(Ap )"jEtJ“pH(w)Jr(A )Et+pmw)+(AEt)+ V@) - Aw  (Al)

m
0

in a more convenient form. We now suppose that= o, — o, andAm = m, — m, are
both different from zero; the particular cases of data for the Riemann problem not fulfilli
these conditions will be dealt with separately later on. Then, provided that

m
Am— —Ap #0, (A.2)
PO
the one-parameter family of solutions is obtained from the following system

2
= 1{Ami \/(Am)2 —(Ap) [A<m> + (AP — V() - Aw)} }
Ap P

- m. _, m ¢ ~
(Am——Ap) {A(—(E +H)> - —=(AE +VwH(w)~Aw)},
2 P P
(A.3)

| S

Et+ I ()
P

where the first equation has been rewritten by exploiting the quadratic solution formt
This is a system of two coupled equations in the three unkna@ni, ﬁ)T =w. We
notice that the coupling is due to the presence of the unknowmtie functionIT () on
the left-hand side of the second equation, and to the presence of thé&yadtiand of the
gradientV ,, I1(@) on the right-hand sides.

We now substitute the supplementary equation (5.3), namely,

Vo I1() - Aw = AP, (A.4)

into the above system, so that the first equation of system (A.3) can now be written so a
express the ratidh/p as

2
= 1 Am=+ \/(Am)2 - (Ap)A<m> ] (A.5)
Ap P

The equation above has two different solutions and hence we have to choose

SUE
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physically relevant one. Let us first consider the discriminant in (A.5). By substitutir
the variationsAm = m, — m, andAp = p; — py, the condition for a positive discriminant
reads

2
m m
m? — 2mem, + mZ — (pr — pe)<—' - —‘) > 0,
Lr Pe

that can be written as the ratio of two quantities

_ 2
M > 0. (A.6)
PePr

The denominator is always positive whereas the numerator is only nonnegative. There
Eq. (A.5) has two real distinct solutions except when

m( mr

Pe Pr

9

in which case the root is double. This special situation, which was excluded by impos
condition (A.2), corresponds to a constant velocity across the left and right states and

be dealt with in the following.
Considering now a positive discriminant, the solution of the quadratic equation (A.5) 1

the ration/ 6 may be written as

1 m;, — prm
= {m, —mgiw}. (A7)
Pr — Pr A/ PePr

The solution obtained by taking the negative sign in the expression reads

SHE

my m

_ v T um (A8)
INZE SN/ '

whereas, by taking the positive sign in (A.7), we have

b1| =

~ me M
T — P VP
p NPt = A/ Pr

This result is rejected since it leads to an infinite value for the ragip whenAp — 0, if

m, andm; are fixed.
The resulting system of three equations now reads

Vo, I(®) - Aw = AP,

m + m;

m_ Ve e
N/ TR N/

Bt IT(4) A(%(Et—i-l'l)) %(Et+n)
F; - Am—%Ap




74 GUARDONE AND VIGEVANO

By rewriting the last term in the right-hand side of the energy equation in the slight
different form,

~ . EY41 i EY4N
E'+ IT(W) . A<m o >_?A<’O P )

] N Am— %Ap

E)

and by substituting the value @i/ given by (A.8) into the equation above we obtain the
system

VU)H(ID)'A = AP,
m et U
M_ (A.9)
12 J_+J/o_r
—~ E+H(u/) Er T (wy
BN gt
h Voe + /e

that is, system (5.4).

APPENDIX B: SPECIAL CASES OF ROE LINEARIZATION FOR NONIDEAL GASES

The solution of the linearization problem for the Euler equations described above n
break down due to the division by vanishing quantities. This occurs either when the d
sity is the same in the left and right states or when the tenmm— %Ap is equal to
zero. The particular castto = AE = 0 is trivial since thermodynamics impliegsP = 0
and therefore, being the supplementary equation an identity, the intermediate density is :
trary, the other two variables being recovered as solutions of the second and third equa
of system (A.9).

B.1. The CaseAp =0,Am#0

If Ap =0, thatis,o, = pr = per, the linearization problem consisting of system (A.1)
augmented with the supplementary equation (A.4) simplifies to

Mn(W)AM+ Mg (W)AE = AP,

~ 2
{Zin + Hm(ﬁ;)] Am + Mg(D)AE" = A(m + H)v (B.1)
F; p

%(E’w M@)) + ?nm(ﬁ:)] Am+ ';‘(1+ Me: (@) AE' = A(':(E‘ + n)>.

The first and the second equations give

2m m? m  me+m
—Am= A<> s =t
2 P o 200

By substituting the ratidn/ into the third equation of (B.1) we obtain

Et +}_[(ﬁ])Am _ E} + M(wy) + E! + H(wr)Am
P 2p0r
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Therefore, ifAm # 0, the system becomes
Mm(®)AM + Mg (D)AE! = AP,

m Mg+ my
o 2p4r
E'4+TI(@)  EL+ M(w) + E + M(wy)

p 200

)

Introducing now the change of variable= (o, m, EY) — v = (p, u, ht), we obtain

. U +u ~ hi+h!
= N ht: r’
. 2 2
IP(E,
STP)AEzAP, (B.2)
E+PE S o @
0 2’

where the relation for the enerdy has been written to close the system. We notice tha
althougho, = pr = per, the intermediate densipy, Solution of the supplementary equation,
is in general different fronp,, .

B.2. The CaseAp =0,Am=0

In the very particular cas&p = 0 and Am = 0, the linearization problem simplifies
further to

Mg (W)AE! = AP,
Mg (W)AE!' = AP, (B.3)

m - t My t

=~ @A+ He(w)AE = —A(E + 1),

1 Per
that is, the supplementary equation and the equation stemming from the conservatio
momentum are the same. Eliminating the quanfity (i0) AE! in the last equation, we
obtain the single relation

MAE +m =™ AE + ),
P Per
which gives immediately
m My
B opa’

since A(E! + IT) # 0. Therefore, in this particular case the intermediate stais the
solution of the system

T Mgy (B4)
0
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which has a one-parameter family of solutions. As remarked, in this very special case,
momentum equation is coincident with the one resulting from the auxiliary condition

V,I1(#) - Aw = AP,

introduced eventually to select a unique intermediate state and hence an additional conc
is to be given to define both the intermediate statand the Roe matrix completely.
Introducing now the change of variable= (o, m, EY) — v = (p, u, h'), and fixing the
available parameter by selecting the standard average of the enthalpy, namely,

c_ A+ At b

)

NZEN Y
we have
lj:ungu,’ ﬁtzh},—i—hﬁ,
2 2

aP;E,ﬁ)AE — AP, (B.5)

E+PES _ pt @2
EXPED = pt — &,
where again the relation for the enerfgyhas been written to close the system. To conclude
we notice that, due to the particular choice for the average total enthalpy, the intermed

state obtained in this special case has the same form as in the previous section.
B.3. The CaseAm = %Ap, Ap 70, Am#Z0
We now go back to considering the situation associated with the breakdown in the solu
of the energy equation in (5.4), namely the condition

Am—2Ap=0. (B.6)
0

In the following, one can assum&p # 0 since the very special cagagp = Am = 0 has
been already considered in the previous section.

The conditionAm = %Ap corresponds to the vanishing of the square root in Eq. (A.5
so the intermediate state is defined by the following set of three equations easily recove
from the general system (A.1)

V(%) - Aw = AP,

m Am
m_ am B.7
F Ap B.7)
MAE + 1) = A(m(Et+1'I)>.
F p

By eliminatingm/ 6 from the second and the third equation we obtain the relation
Am ‘ m _,
—AE'+I)=A—=(E+1I) ),

Ap P

in which no unknown appears and that must therefore be an identity for the system tc
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solvable. By evaluating the variations appearing in the relation above we have

E; + (wy))
Pr — Pe Pr

—%‘(Ezm(ww),

which is a trivial identity for any pressure functidh(w) if one can show that

m, —m m my —m m
- and — ="
Pr — Pe Pr Pr — Pe Pe

These two relations are satisfied identically provided that

m@ mr

9

Pe Pr

which is indeed the case we are considering.
Therefore, in the cas®,/p, = m:/pr, the third equation is identically satisfied and the
problem simplifies to

V, () - Aw = AP,

m _ Am (B.8)
b Ap’

so that there is a one-parameter family of solutions and therefore an additional ¢
dition should be imposed in this case to determine the intermediate state comple

If we again consider the change of variable= (o, m, E!) - v = (p, u, h'), and
fix the available parameter by selecting the arithmetic average of the enthalpy, we have

G = u[n ht

IP(E, 5 =5
( ,p)AE+3P(E,p)
9E ap

E+P(E.p) ~ 02
o B 2
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