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Roe Linearization for the van der Waals Gas
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An extension of the Roe linearization method to nonideal gases is described and
applied to the particular case of the van der Waals gas. A supplementary relation
connecting the thermodynamic variables is introduced to decouple the evaluation
of the intermediate velocity and total specific enthalpy from the determination of
the intermediate density, needed in the Jacobian matrix of the linearization due to
the general thermodynamic character of the gas. The density value is obtained by
solving the supplementary equation, which involves the Roe average of velocity and
enthalpy, and that in the case of the polytropic van der Waals gas is a third-order
algebraic equation. Numerical results are shown including classical and nonclassical
behaviour in one-dimensional shock tube problems.c© 2002 Elsevier Science
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1. INTRODUCTION

The computation of compressible flows of a gas described by the van der Waals equation
of state is a very active research area in the study of dense gas near the liquid–vapor saturation
curve. In particular, the van der Waals gas is often taken as a simple model of BZT (Bethe,
Zel’dovich, and Thompson) fluid to investigate negative shock waves and other phenomena
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related to negative nonlinearity. Some commercially available heat transfer fluids such as, for
instance, FC-71 (C18F39N), FC-72 (C6F14), PP9 (C11F20), or PP11 (C14F24) are believed to
possibly exhibit nonclassical waves near the liquid–vapor saturation curve. This anomalous
behavior occurs when thefundamental derivative of gas dynamicsintroduced by Bethe
[4]

G(s, v) def= −v
2

∂2P(s, v)

∂v2

/
∂P(s, v)

∂v
, (1.1)

with P, s, andv denoting pressure, entropy per unit mass and specific volume, respectively,
becomes negative. Since∂P(s, v)/∂v < 0 for thermodynamic stability, the negative sign of
G is associated with regions of the flow field in which the isentropes in the volume–pressure
plane are not convex; therefore, the polytropic ideal gas approximation, which allows for
convex isentropes only, is no longer acceptable. A flow field in whichG(s, v) becomes
negative results into a loss of the genuinely nonlinear character of acoustic waves and may
lead to the formation of negative or mixed waves as described in the fundamental paper of
Menikoff and Plohr [21]; a flow regime of this kind is said to be adense gas regime.

Mixed and split waves may also be formed—irrespective of the sign ofG—when the
fluid undergoes a phase change because of the kink of the isentropes at the phase transition
boundary. However, the study of these two-phase phenomena falls outside the scope of the
present work.

The existence of mixed waves in the dense gas regime does not allow a direct use of most of
the standard numerical techniques for solving the compressible Euler equations, which were
developed to deal with classical wave structures. Moreover, if an artificial viscosity method
is employed, care must be taken in the selection of the proper trigger for the numerical
dissipation operator; in fact, standard sensors based on the sign of pressure jumps may fail
to detect a nonclassical isentropic compression and may consequently introduce a too-large
numerical dissipation.

In the framework of numerical schemes for the Euler equations for dense gases, different
approaches have been followed. Argrow [2] used a predictor–corrector scheme based on
the Davis flux limited method [9] for the van der Waals gas, being mainly interested in
the evaluation of more refined gas models. Rider and Bates [26] developed a Riemann
solver with an explicit treatment of the nonconvexity of the isentropic curves. M¨uller and
Voß [24] opened the way to the use the standard Godunov method by developing an exact
Riemann solver which takes into account nonclassical gas behavior. In the present work, a
new method is presented, which extends the upwind scheme proposed by Roe [27] for the
ideal polytropic gas to dense gas models in general and to the polytropic van der Waals gas
in particular.

It is well known that the linearization procedure of Roe’s scheme is not uniquely deter-
mined when a real gas equation of state is taken into account. Most of the formulations
of Roe’s method developed to deal with a general equation of state [1, 7, 10, 12, 19, 33]
may be described as linearizations in quasi-Jacobian form [23], where the thermodynamic
pressure derivatives are considered as additional unknowns that provide sufficient degrees
of freedom to make the solution of the linearization problem unique. The proposed method
follows a different approach, in which a strictly Jacobian form is retained—thus ensuring
the hyperbolic character of the linearized problem—while the density is raised to the role
of the required additional unknown.
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This paper is organized as follows. In Section 2, the ideal and van der Waals gas models
are briefly recalled. In Section 3, the Euler equations for a general (possibly nonideal)
gas are presented, and the influence of the fundamental derivative on the properties of
characteristic fields is discussed. In Section 4, the standard Roe linearization for the ideal gas
with constant specific heats (polytropic) is recalled, and extensions to other gas models are
briefly described. In Section 5, the proposed linearization procedure is described discussing
both its reduced form for a possibly nonpolytropic gas and its general form for nonideal
gases. In Section 6, the linearization procedure is applied to the polytropic van der Waals
gas, for which numerical results are given in Section 7. In the appendices, the details
of the solution of the linearization problem according to the proposed formulation are
given.

2. THE VAN DER WAALS MODEL OF DENSE GASES

In this section, the basic thermodynamic properties of the ideal gas and of the van der
Waals gas are recalled. In particular, the expression of the fundamental derivativeG, whose
negative sign is associated with anomalous behaviour, is given.

As is well known, for anideal gaswith only a chemical species, theequation of state
(EOS) for the pressureP is

P(T, v) = RT

v
, (2.1)

whereT is the temperature,v is the specific volume, andR
def= R/µ0 is a gas-dependent

constant,R is the universal gas constant, andµ0 is the molecular weight.
To have a complete description of the thermodynamic properties of the gas, a second

EOS for the internal energye= e(T, v) is needed. This equation has to be compatible with
(2.1), since both equations are a consequence of a single fundamental relations= s(e, v),
wheres is the entropy per unit mass. The energy equation compatible with (2.1) is easily
seen to be of the form

e(T, v) = f (T),

where f (T) is an arbitrary function, which is related to the heat capacity at constant volume
cv by cv(T)

def= ∂e(T, v)/∂T = f ′(T); by thermodynamic stability,f ′(T) = cv(T) > 0.
From a physical viewpoint, the form of the functionf (T) comes from the statistical

mechanics of the gas, including effects of its possible rotational and vibrational degrees of
freedom (see Landau and Lifshitz [16]). In particular, if a classical (nonquantum) mechanical
treatment is assumed,cv is constant, as it is always the case for a monoatomic gas, and the
gas is said to bepolytropic. The resulting (complete) model ofpolytropic ideal gasreads

P(T, v) = RT

v
, e(T, v) = cvT + e0, (2.2)

wheree0 is the reference internal energy at zero temperature that will be neglected in the
following, without loss of generality.

Let us now consider the fundamental derivative of gas dynamicsG defined in (1.1).
For a polytropic ideal gas, the isentropes in thev-P plane, P/vδ+1= constant, where
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δ= R/cv, have always a positive curvature, so thatG> 0 and therefore no anomalous
behavior can occur. The above can be proved by substituting the definition of the speed of
sound,c2(s, v) = −v2∂P(s, v)/∂v, into (1.1); namely,

G(s, v) = v3

2c2

∂2P(s, v)

∂v2
.

From the expression above and usingP(s, v) = δ exp[δ(s− s0)/R]/vδ+1, the expression
of the fundamental derivative for a polytropic ideal assumes the constant value

G(s, v) = δ

2
+ 1> 0, (2.3)

which is positive due to thermodynamic stability (δ = R/cv > 0).
The ideal model of dimensionless colliding atoms or molecules has been extended in 1873

by J. D. van der Waals [32] to take into account repulsive covolume effects and attractive
intermolecular forces. The resulting model leads to a pressure EOS in the form

P(T, v) = RT

v − b
− a

v2
, (2.4)

wherea andb are two (gas-dependent) constants, functions of the strength of intermole-
cular forces (only pair interactions of molecules are considered), and of the volume of
the molecules, respectively. Forv À b and P À a/v2, i.e., far from the saturation curve,
the ideal gas model is recovered. The energy EOS compatible with (2.4) is found to be
in the form [6]

e(T, v) = f (T)− a

v
,

where againf (T) is an arbitrary function but for the thermodynamic stability condition
f ′(T)≡ cv(T) > 0. Here, we restrict our analysis to the polytropic van der Waals gas model,
defined by settingf (T) = cvT , with cv a known constant, so that

e(T, v) = RT

δ
− a

v
, (2.5)

where againδ = R/cv. For completeness, we recall the expression of the fundamental
relation for the polytropic van der Waals gas, namely,

s(e, v) = R ln

[
(v − b)

(
e+ a

v

) 1
δ

]
+ s0, (2.6)

in which s0 is a constant. From (2.4) and (2.6), we can write the EOS for the pressure as a
function of the specific entropy and specific volume, namely,

P(s, v) = δexp
[
δ
R(s− s0)

]
(v − b)δ+1

− a

v2
. (2.7)

We notice in passing that the isentropes, which can be obtained from (2.7) by takings=
constant, reduce to the ones obtained in the polytropic ideal case, i.e.,P/vδ+1 = constant,
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FIG. 1. Isentropes in thev-P plane for a van der Waals gas withδ = 0.0125. The nonconvex region is located
between theG = 0 locus and the saturation curve. The critical point C has coordinatesvc = 3b, Pc = a/27b2.

in the limit v→∞. Furthermore, in the limitδ→ 0, the isentropes are coincident with the
van der Waals isotherms.

From (2.4), the fundamental derivative of the van der Waals gas is easily obtained
as

G(P, v) def= G(s(P, v), v) = (δ + 1)(δ + 2) P+a/v2

(v−b)2 − 6a
v4

2(δ + 1) P+a/v2

v(v−b) − 4a
v4

, (2.8)

which has been expressed1 in terms of the pressure and specific volume for later conve-
nience.

For the polytropic van der Waals gas a finite region of negativeG may exist [29] in the
vapor phase near the saturation curve (see Fig. 1). The locusG = 0, the boundary between
the classical and nonclassical regimes, can be found by setting the numerator of (2.8) to
zero and solving for the pressureP to find

PG=0(v) = a

v2

[
6

(δ + 1)(δ + 2)

(
1− b

v

)2

− 1

]
. (2.9)

In the limit δ→ 0, i.e,cv →∞, the locusG = 0 is a line in the planev-P starting from
the critical point of coordinates (vc = 3b, Pc = a/27b2) and delimiting, together with the

1 Here and in the following, with a slight abuse of mathematical notation, we will denote different functions of
a given physical quantity in terms of different variables by one and the same symbol, as it is a standard practice
in thermodynamic formulae.
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saturation curve, a finite region of negativeG in the vapor phase. The extent of the nonclas-
sical region diminishes asδ increases, and reduces to a single point on the saturation curve
of coordinates (1.4843vc, 0.888Pc) for δ = δ∗ = 1/16.66= 0.06, as given by Thompson
and Lambrakis [30]. Otherwise, ifδ > δ∗, no anomalous behavior can be observed in the
vapor phase. In Fig. 1, the nonclassical region is shown forδ = 0.0125.

Thanks to this simple algebraic form, the polytropic van der Waals gas has been often used
as a qualitative model to study the behavior of negative nonlinearities near the saturation
curve [2, 3, 5, 8, 22, 24]. Nevertheless, more accurate models are available and are currently
employed whenever a quantitative analysis is needed; see, for instance, the works of Reid,
Prausnitz and Poling [25] and of Martin and Hou [20].

3. EULER EQUATIONS FOR NONIDEAL GASES

We now consider a system of conservation laws in one spatial dimension for the vector
unknownw(x, t) ∈ Rp, x ∈ R, t > 0, in the form

∂w

∂t
+ ∂f (w)

∂x
= 0, (3.1)

where the fluxf (w) : Rp→ Rp is a given vector function. For the one-dimensional Euler
equations of gasdynamics of interest here, we have

f (w) =
(

m,
m2

ρ
+5(w), m

ρ
(Et +5(w))

)T

, (3.2)

wherew = (ρ,m, Et)T ∈ Ä ⊂ [R+ × R× R] is the vector of the conservative variables
mass, momentum, and total (internal and kinetic) energy per unit volume. From the EOS
P = P(E, ρ), whereE is the internal energy per unit volume, we have introduced the
pressure functionin terms of the conservative variables, namely,

5(w)
def= P

(
Et − m2

2ρ
, ρ

)
. (3.3)

For later convenience, we recall here the Jacobian matrix of the flux,A(w) = ∂f (w)/∂w,
namely,

A(w) =


0 1 0

−m2

ρ2 +5ρ(w)
2m
ρ
+5m(w) 5Et(w)

m
ρ

(
− Et+5(w)

ρ
+5ρ(w)

)
Et+5(w)

ρ
+ m

ρ
5m(w)

m
ρ
(1+5Et(w))

 ,

where we used the standard notation5wk(w)
def= ∂5(w)/∂wk, k = 1, 2, 3. The partial

derivatives ofP(E, ρ) can be easily obtained from those of5(w) by means of the chain
rule as

∂P(E, ρ)

∂E
= 5Et(w),

∂P(E, ρ)

∂ρ
= 5ρ(w)− 1

2

m2

ρ2
5Et(w), (3.4)
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where the variableE on the left-hand sides is to be expressed in terms of the conservative
variablesw through the relationE = E(w) = Et −m2/(2ρ). Moreover,P(E, ρ) being a
function of only two variables, the following relation holds:

5m(w) = −m

ρ
5Et(w). (3.5)

Let us briefly recall some properties of the characteristic fields of the Euler equations
in one dimension which are peculiar to the dense gas regime. For a complete description,
we refer to the review of Menikoff and Plohr [21] and to the recent work of M¨uller and
Voß [24]. For thekth characteristic fields, we introduce thenonlinearity factor

αk(w)
def= ∇wλk(w) · rk(w), (3.6)

whereλk(w) = m/ρ + εkc(w), εk = k− 2, k = 1, 2, 3, andrk(w) are the eigenvalues and
the eigenvectors of the Jacobian matrixA(w), respectively,c(w) is the speed of sound and

∇w def= ∂/∂w.
As is well known, the value of the nonlinearity parameter is of the utmost importance in

classifying characteristic fields. Thekth characteristic field is said to belinearly degenerate
if αk(w) = 0∀w ∈ Ä, while if αk(w) 6= 0 ∀w ∈ Ä, the characteristic field is said to be
genuinely nonlinear(see, for instance, Godlewski and Raviart [11]). Let us now clarify the
consequences of the sign of the fundamental derivative in the definition of the characteristic
fields, by writing the nonlinearity factor in the equivalent form [21]

αk(w) = εkG(w)c(w)ρ, (3.7)

where again the notationG(w) implies the change of variables(s, v)→ w. In the theory
of ideal polytropic gases,G = const> 0, so that both the first and the third fields (ε1 =
−1, ε3 = 1) are genuinely nonlinear and classical compressive shocks and rarefaction fans
are observed. The second characteristic field (ε2 = 0) is instead linearly degenerate, and it is
associated with contact discontinuities. Such a hyperbolic system, for which characteristic
fields are either genuinely nonlinear or linearly degenerate, is called aconvexhyperbolic
system.

On the contrary, in the dense gas regime in the locusG = 0 (Fig. 1), we haveαk(w) =
0, k = 1, 2, 3, and the genuine nonlinearity is lost. Consequently, the hyperbolic system
is nonconvexand nonclassical negative or mixed waves can possibly occur. An example
is given in Fig. 2, where the density distribution resulting from a shock tube problem is
shown together with the locus of the gas states in thev-P plane. Both left and right initial
states lie in the positiveG region, but during the time evolution the gas states cross the
G = 0 boundary. Together with a classical compressive shock and a contact discontinuity
propagating toward the low pressure side, the flow is characterized by a mixed rarefaction
wave where the rarefaction fan moving toward the pressure side is connected with a rar-
efaction shock. For the description of the mathematical difficulties arising from considering
this kind of nonclassical Riemann problems and for their solution, we refer again to [21]
and [24].
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FIG. 2. Example of a mixed rarefaction wave. Density distribution (left) and gas states in thev-P plane
(right). The dotted line is the boundary of the nonclassical region.

4. ROE LINEARIZATION

As is well known, Roe’s Approximate Riemann Solver (ARS) is a Godunov-type scheme
based on a local linearization of the considered hyperbolic system of conservation laws,
devised in order to avoid the exact solution of Riemann problems [27]. For a detailed des-
cription of the method (and of its higher order implementation), we refer to LeVeque’s [18]
and Godlewski and Raviart’s [11] monographs.

Let us consider the solution of the Riemann problem associated with the left and right
statesw` andwr , namely, 

∂w

∂t
+ ∂f (w)

∂x
= 0,

w(x, 0) =
{
w` x < 0
wr x > 0

by means of the Roe linearization technique. The conservation law is approximated by a
linearized equivalent substitute as

∂w

∂t
+ A∗(w`,wr )

∂w

∂x
= 0, (4.1)

where a suitable matrixA∗(w`,wr ) of dimensionp× p (function of the left and right state
w` andwr ) has been introduced, according to the following prescriptions:



58 GUARDONE AND VIGEVANO

DEFINITION 4.1. Matrix A∗(w`,wr ) is called a Roe linearization of the hyperbolic
system with fluxf (w) and Jacobian matrixA(w) = ∂f (w)/∂w if (w`,wr )→ A∗(w`,wr )

is a mapping fromRp × Rp into the set ofp× p matrices with the following properties:

(i) Conservation:A∗(w`,wr )(wr −w`) = f (wr )− f (w`),
(ii) Hyperbolicity: A∗(w`,wr ) has real eigenvalues and a corresponding set of eigen-

vectors that form a basis ofRp,
(iii) Consistency:A∗(w`,wr )→ A(w) asw` andwr → w.

In principle, the determination of theRoe matrixA∗(w`,wr ) satisfying the conditions
above requires the definition of all itsp× p elementsa∗i, j (w`,wr ), which are related by the
p quantitative conditions stated in (i), assuming that conditions (ii) and (iii) are satisfied. If
the p conditions are all nontrivial, the general solution for the linearization matrix will be a
(p2− p)-parameter family of solutions. In particular, for the Euler equations in one spatial
dimension,p = 3, and we have a six-parameter family of solutions. In practice, to fulfill
conditions (ii) and (iii), it is convenient to properly select the form of matrixA∗. In the
following sections, standard Roe matrices for the Euler equations are recalled for different
gas models.

4.1. Roe Linearization for the Ideal Polytropic Gas

Originally, Roe ARS was formulated considering the Euler equations for a polytropic
ideal gas through a suitable change of variables, i.e., the so-called parameter vector trans-
formation [27]. In this case, the linearizing matrix is found to be equivalent to the Jacobian
matrix of the flux function evaluated at an intermediate state ˜w(w`,wr ), defined by Roe
averaged values of velocitỹu and total specific enthalpỹht, while no intermediate density is
needed in the evaluation of the Jacobian matrix due to the particular form of the equations
of state of the gas.

Denoting withA(w) the Jacobian matrix of the nonlinear hyperbolic system, a linearizing
matrix of the form

A∗(w`,wr ) = A(w̃(w`,wr )) (4.2)

will be called hereinafter a linearization inJacobian form. For an ideal polytropic gas, this
matrix can be defined in terms of only two variables, thanks to the first-order homogeneity
of the flux functionf (w). These two variables are typically chosen as the velocity and total
specific enthalpy, so that

A∗(wr ,w`) = API(ũ, h̃t) =

 0 1 0

(δ − 2)ũ2 δũ δ

ũ
(

1
2δũ

2− h̃t
)

h̃t − δũ2 (δ + 1)ũ

. (4.3)

Solving now the linearization problem implied by condition (i), which now reads

API(ũ, h̃t)(wr −w`) = f (wr )− f (w`),

we obtain the intermediate values of the velocity and total specific enthalpy, which are given
by the celebrated expressions [27]:

ũ =
√
ρ`u` +√ρr ur√
ρ` +√ρr

, h̃t =
√
ρ`ht

` +
√
ρr ht

r√
ρ` +√ρr

. (4.4)
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For the solution of the linearization problem using the direct substitution procedure outlined
above, we refer, for example, to Motturaet al. [23] or to Guardoneet al. [14].

4.2. Standard Extensions to Different Gas Models

To extend Roe solver to gas models different from the ideal polytropic one, several ap-
proaches have been followed [1, 7, 10, 12, 19, 33]. It has been noticed [23] that all these me-
thods can be written so as to obtain aquasi-Jacobian formfor the Roe matrix, in which the
original intermediate state (ũ, h̃t) of Roe is augmented by additional unknowns, namely, the
pressure derivatives (either with respect to the conservative variables or with respect to
two independent thermodynamic variables). The standard average for the velocity and total
specific enthalpy can be recovered if the additional variables satisfy a linear relationship that
will be given later on. The resultingextendedintermediate state is not uniquely determined
by applying the original parameter vector transformation and therefore, in most of these
extensions, a defined intermediate state is singled out by directly imposing an additional
constraint on the average pressure derivatives.

Let us consider the following quasi-Jacobian form of the Roe matrix, namely,

A∗(w`,wr ) = AqJ(ũ, h̃t, 5̃ρ, 5̃m, 5̃Et)

=


0 1 0

−ũ2+ 5̃ρ 2ũ+ 5̃m 5̃Et

ũ(5̃ρ − h̃t) h̃t + ũ5̃m ũ(1+ 5̃Et)

. (4.5)

This matrix is said to be in a quasi-Jacobian form since it is obtained from matrixA(w) in
which the averaged quantities5̃ρ, 5̃m, and5̃Et are no longer the partial derivatives of5(w)
evaluated in some intermediate state, but only additional parameters of the linearization
procedure. In other words, matrixAqJ is uniquely determined by specifying anextended
intermediate state (ũ, h̃t, 5̃ρ, 5̃m, 5̃Et ). Assuming now the standard average (4.4) for the
velocity and total specific enthalpy, it can be shown [23] that the two nontrivial equations
stemming from the imposition of condition (i) are linearly dependent and reduce to the
following single linear equation for the parameters5̃ρ, 5̃m and5̃Et

5̃ρ1ρ + 5̃m1m+ 5̃Et1Et = 1P, (4.6)

where1(·) = (·)r − (·)`. Therefore, the solution of the linearization problem in a quasi-
Jacobian form is a two-parameter family of solutions. In practice, to enforce consistency,
relation (3.5) is imposed betweenũ, 5̃m, and5̃Et , to give the additional equation

5̃m = −ũ5̃Et , (4.7)

thus reducing the number of degrees of freedom to one. Different methods are obtained
according to different choices of the remaining parameter, as reviewed in [23].

The schemes based on the quasi-Jacobian form have proved successful in the compu-
tation of chemically reacting hypersonic flows and in different real gas applications. On
the other hand, in our opinion, a drawback of these schemes lies in that the intermediate
quantities5̃ρ, 5̃m, and5̃Et are artificial unknowns not retaining their exact thermodynamic
significance: as pointed out by Toumi [31], this may lead to inconsistencies whenever these
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quantities are employed to derive other thermodynamic quantities such as, for example,
the speed of sound, which is needed to evaluate the eigenstructure of the linear system.
Moreover, in this approach conditions (ii) and (iii) still remain to be verified and in general
their fulfillment will lead to additional constraints.

A noticeable exception is the work of Toumi [31], who, through a weak formulation of
the linearization problem and by using a parameter vector approach, was able to obtain a
simpler quasi-Jacobian form. In this approach the pressure derivatives are given in terms
of an average Gr¨uneisen coefficient, which is the only additional parameter with respect to
the Jacobian approach. The latter quantity, approximated by numerical quadrature in state
space, uniquely defines the Roe matrix, together withũ andh̃t.

5. THE PROPOSED LINEARIZATION FOR NONIDEAL GASES

To overcome the difficulties highlighted in the previous section, we propose an extension
of Roe ARS based on a strictlyJacobian form, by choosingA∗ as the Jacobian matrix
A(w) = ∂f (w)/∂w to be evaluated in anintermediate statẽw = w̃(w`,wr ) obtained from
condition (i), which therefore becomes

A(w̃(w`,wr ))(wr −w`) = f (wr )− f (w`), (5.1)

and represents a system ofp equations in thep unknowns ˜wk, 1≤ k ≤ p. Such a Jacobian
form ensures that the qualitative condition (ii) is automatically fulfilled and implies that
condition (iii) now reads more simply: ˜w(w`,wr )→ w asw` andwr → w.

Let us now particularize system (5.1) to the Euler equations. In this case, the Roe matrix
A∗(w`,wr ) = A(w̃(w`,wr )) reads

A(w̃) =


0 1 0

− m̃2

ρ̃2 +5ρ(w̃)
2m̃
ρ̃
+5m(w̃) 5Et(w̃)

m̃
ρ̃

(
− Ẽt +5(w̃)

ρ̃
+5ρ(w̃)

)
Ẽt +5(w̃)

ρ̃
+ m̃

ρ̃
5m(w̃)

m̃
ρ̃
(1+5Et(w̃))

 ,

and the system (5.1) has three equations in the three unknowns ˜ρ, m̃, Ẽt. The first equation
of this system is identically satisfied (1m= 1m) so that there are only two nontrivial
equations and consequently the intermediate state is actually a one-parameter family of
solutions. The two nontrivial equations stemming from the system can be rearranged so as
to put in evidence the pressure jump and the partial derivatives of the function5(w) as

(1ρ)

(
m̃

ρ̃

)2

− 2(1m)
m̃

ρ̃
+1m2

ρ
+ [1P −∇w5(w̃) ·1w] = 0,

−(1ρ)m̃
ρ̃

Ẽt +5(w̃)
ρ̃

+ (1m)
Ẽt +5(w̃)

ρ̃
+ (1Et)

m̃

ρ̃
+ m̃

ρ̃
∇w5(w̃) ·1w

=1
(

m

ρ
(Et +5)

)
,

(5.2)

where1P = 5(wr )−5(w`). This is a system of two coupled equations in the three
unknowns ˜ρ, m̃, Ẽt.



ROE LINEARIZATION FOR THE VAN DER WAALS GAS 61

In the following sections, the solution of the linearization problem in Jacobian form will
be analyzed; a distinction will be made between flux functions homogeneous of degree one,
namely, under the hypothesis of gas ideality (Section 5.1), and flux functions stemming
from a general nonideal gas (Section 5.2).

5.1. Ideal Gases and Homogeneity

Let us consider the case of a fluxf (w) homogeneous of degree one with respect tow.
In this case, the equation system (5.1), which involves the evaluation of partial derivatives
of f (w) only, can be written as a system in onlyp− 1 unknowns, the usual choice for
the Euler equations (p = 3) being the velocity and total enthalpy per unit mass (u, ht).
As is well known [28], the above property off (w) depends only on the thermodynamic
model employed: in particular,f (w) is homogeneous of degree one if and only if the gas is
ideal, irrespective of its polytropic or nonpolytropic character. In this case, for any equation
of stateP(E, ρ), compatible with the assumption of gas ideality, the intermediate state
(ũ, h̃t) turns out to be uniquely determined as solution of the system of two equations (5.2).
Under the further assumption of apolytropicgas,P(E, ρ) = δE and the unique solution is
provided by the so-called Roe average (4.4), which uniquely definesA? as in (4.3), while
the intermediate state ˜w of the conservative variables is defined up to an arbitrary density,
for example.

On the contrary, for anonpolytropicideal gas, i.e., an ideal gas with anonlinearfunction
e= f (T), the intermediate state is still defined uniquely as the solution of system (5.1),
but in a way that in principle cannot be reduced to the Roe average (4.4) and that depends
on the form of the functionf (T).

To conclude, we notice that the above holds also for gas models which differ from the
ideal one by the occurrence of only an additive linear function ofρ in the EOSP = P(E, ρ),
since this dependency onρ is eliminated by taking the derivative. This occurs for example
for the stiffened Gr¨uneisen equation of state [21], namely,

P(E, ρ) = δE + c2
ref(ρ − ρref),

wherecref andρref are constant reference values, and an EOS which is obtained by linearizing
a Grüneisen equation for a metal.

5.2. Nonideal Gases: An Equation for the Intermediate Density

Coming now to the nonideal gases of interest here, we propose to exploit the available
degree of freedom of the one-parameter family of solutions of the linearization problem
by fixing the intermediate state to reduce the complexity of system (5.2). This can be
achieved by augmenting system (5.2) with the introduction of thesupplementary equation
[14]

∇w5(w̃) ·1w = 1P, (5.3)

so that we obtain the system
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

∇w5(w̃) ·1w = 1P,

m̃

ρ̃
=

m`√
ρ`
+ mr√

ρr√
ρ` +√ρr

,

Ẽt +5(w̃)
ρ̃

=
Et
`
+5(w`)√
ρ`
+ Et

r+5(wr )√
ρr√

ρ` +√ρr
,

(5.4)

of three equations in the three unknowns(ρ̃m̃, Ẽt) = w̃. The augmented system (5.4) has
been presented in [14] and its derivation is detailed in Appendix A. By introducing the
variables velocityu = m/ρ and total enthalpy per unit massht = (Et +5(w))/ρ, that
is, through the change of variablew = (ρ,m, Et)→ v = (ρ, u, ht), the second and third
equations in (5.4) are solved to give explicit expressions for the intermediate velocity and
total enthalpy in the form

ũ =
√
ρ`u` +√ρr ur√
ρ` +√ρr

and h̃t =
√
ρ`ht

` +
√
ρr ht

r√
ρ` +√ρr

, (5.5)

exactly as in the case of the polytropic ideal gas, while the introduced supplementary
equation, written in terms of the new vector unknownv = (ρ, u, ht), is found to be an
equation for the single unknown intermediate density ˜ρ.

Summarizing, for any gas different from the ideal gas, the solution of the augmented
linearization problem is obtained from the Roe-averaged quantities in (5.5) and from the
subsequent solution of the single equation

∇w5(w(ρ̃, ũ, h̃t)) ·1w = 1P (5.6)

for the unknown ˜ρ.
Let us now rewrite the supplementary equation (5.6) in a more convenient form. By

using1Et −1E = − 1
21(m

2/ρ) and the fact that the intermediate velocityũ satisfies
the following relation (from the momentum equation of the linearization problem, see
Appendix A):

1

(
m2

ρ

)
= −ũ21ρ + 2ũ1m,

and by substituting relations (3.4) and (3.5) into Eq. (5.6), the supplementary equation
assumes the form

∂P(Ẽ, ρ̃)

∂E
1E + ∂P(Ẽ, ρ̃)

∂ρ
1ρ = 1P (5.7)

having introduced the shorthand̃E = E(h̃, ρ̃) = ρ̃h̃− P(h̃, ρ̃) and h̃ = h̃t − ũ2/2.
Equation (5.7) makes explicit that the supplementary equation has a mere thermo-
dynamic content. The complete system for the intermediate state ( ˜ρ, ũ, h̃t) now
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reads, 

ũ =
√
ρ`u` +√ρr ur√
ρ` +√ρr

, h̃t =
√
ρ`ht

` +
√
ρr ht

r√
ρ` +√ρr

,


∂P(Ẽ,ρ̃)
∂E 1E + ∂P(Ẽ,ρ̃)

∂ρ
1ρ = 1P,

Ẽ+P(Ẽ,ρ̃)
ρ̃

= h̃t − ũ2

2 ,

(5.8)

where the definition of the internal energỹE has been written explicitly to have a closed
system.

We want to stress again the fact that in the present method no averaging of the pressure
derivatives is introduced, since theiranalytical expressionsare evaluated exactly at the
intermediate state, which is completely determined. Although the supplementary equa-
tion (5.3) takes a form similar to condition (4.6) needed in the quasi-Jacobian linearization,
the two procedures are basically different. In fact, in a Roe linearization in quasi-Jacobian
form, the extended intermediate state is found by imposing a a constraint on theunknown
average derivatives of the pressure and the resulting linearization depends on the (arbitrary)
average chosen for the pressure derivatives themselves. On the contrary, the supplementary
equation introduced in the present approach selects a unique ˜w within the one-parameter
family of intermediate states and, at the same time, uncouples the determination of the un-
knowns intermediate velocity and enthalpy from the evaluation of the intermediate density ˜ρ.

6. INTERMEDIATE DENSITY FOR THE VAN DER WAALS GAS

The linearization procedure outlined in the previous section is now specialized to the
case of the polytropic van der Waals gas. The pressure EOS reads

P(E, ρ) = δ E + aρ2

1− bρ
− aρ2, (6.1)

from which we obtain

∂P(E, ρ)

∂E
= δ

1− bρ
,
∂P(E, ρ)

∂ρ
= δb(E − aρ2)+ 2aρ

(1− bρ)2
− 2aρ. (6.2)

The algebraic form of the van der Waals thermodynamics allows us to obtain the explicit
expression of the energy in terms of the two variables(h, ρ) as

E(h, ρ) = (1− bρ)ρh− 2aδρ2

δ + 1− bρ
+ aρ2, (6.3)

and solve the linearization problem by substitutingE = E(h, ρ) in the second part of
system (5.8), to obtain

∂P(E(h̃, ρ̃), ρ̃)

∂E
1E + ∂P(E(h̃, ρ̃), ρ̃)

∂ρ
1ρ = 1P, (6.4)

with the understanding̃h = h̃t − ũ2

2 .
By (6.2) and (6.3), Eq. (6.4) is found to be a third-order polynomial in the intermediate

density ratior = ρ̃/ρc = 3bρ̃, in the form [13],

r 3+ Ar2+ Br + C = 0, (6.5)
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with coefficients defined in terms of the left and right states as

A = ρc

6Pc

1P

1ρ
− 3(2+ δ),

B = ρc

2Pc

[
−(2+ δ)1P

1ρ
+ δ
(
1E

1ρ
− h̃t + ũ2

2

)]
+ 9(1− δ2), (6.6)

C = 3ρc

2Pc
(1+ δ)

[
1P

1ρ
− δ1E

1ρ

]
,

whereρc andPc are the critical values of the density and pressure, respectively. Therefore,
the supplementary equation can be solved analytically by standard formulae. The relevant
real root is selected as the one lying within or closer to the interval [ρ`, ρr ]. In the numerical
experiments presented in the following section, this simple criterion has been found to be
suitable to single out the needed intermediate density.

In the particular case1ρ = 0, the supplementary equation (6.4) is linear in ˜ρ and
gives

r = 3− 3δ
1E

1P
, (6.7)

the case1ρ = 0 and1P = 0 being trivial since one has1ρ = 1P = 0⇒ 1E = 0 and ˜ρ
is therefore arbitrary. We notice that in the limitb→ 0 the supplementary equation reduces
to a linear equation in ˜ρ whose solution is given by

ρ̃ = ρ` + ρr

2
.

7. NUMERICAL RESULTS

The proposed linearization procedure has been applied to the solution of reference shock
tube problems for the Euler equations in one spatial dimension. First, we considered a test
case proposed in [17] for the water vapor near the liquid–vapor saturation curve. Since in
the van der Waals approximation of such a gasδ = 0.329> δ∗, the fundamental derivative
G is always positive outside the two-phase region, and no anomalous behavior is observed
in the vapor phase. In the considered numerical experiment, the diaphragm is located at
x = 0.5 and separates the following constant initial states, made dimensionless by critical
values:

ρ` u` P̀ G` ρr ur Pr Gr

WV1 1.01000 0 1.60770 2.23946 0.59400 0 0.89570 1.36136

In Fig. 3, numerical solution of case WV1 is compared with the one obtained by the Davis
method [9], which has been used, for example, by Argrow [2] for the computation of the
nonclassical behavior of the van der Waals gas. The computations have been performed over
a 400-point grid by means of a high-resolution flux-limiter method, which takes advantage
of the proposed linearization near discontinuities and uses a Lax–Wendroff scheme in
smooth flow regions; see, for instance, LeVeque [18]. Results are very similar to those of
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FIG. 3. Numerical solution of the Riemann problem for test case WV1. Solution at the dimensionless time
t∗ = (t/L)(Pc/ρc)

1/2 = 0.2,1t∗ = 1× 10−3.

the Davis method, although the present method achieves a slightly better resolution of the
wave structure as can be appreciated in the enlargements of Fig. 4.

In Figs. 5–8 numerical results including nonclassical phenomena are reported. These
shock tube problems have been proposed by Argrow [2] to explore the nonclassical behavior

FIG. 4. Enlargement of the density distribution for case WV1. Left: rarefaction wave. Center: contact discon-
tinuity. Right: shock wave.
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FIG. 5. Numerical solution of the Riemann problem for test case DG1. Solution at the dimensionless time
t∗ = 0.15,1t∗ = 5× 10−4.
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FIG. 6. Numerical solution of the Riemann problem for test case DG2. Solution at the dimensionless time
t∗ = 0.45,1t∗ = 1.5× 10−3.
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FIG. 7. Comparison of the proposed method and the method of Davis for the resolution of cases DG1 and
DG2.

of a van der Waals gas near the critical point, and are defined by the following dimensionless
quantities:

ρ` u` P̀ G` ρr ur Pr Gr

DG1 1.818 0 3.000 4.118 0.275 0 0.575 0.703
DG2 0.879 0 1.090 −0.031 0.562 0 0.885 −4.016
DG3 0.879 0 1.090 −0.031 0.275 0 0.575 0.703.

The numerical results are computed on a 400-point grid withδ = 0.0125, which corresponds
to a fluid with a large specific heat with respect to its molecular weight as, for instance,
PP10, C13F22 (δ = 0.0128).

The DG1 case corresponds to the situation exemplified in Fig. 2, where the initial gas
states belong to theG > 0 region but theG = 0 boundary in thev-P plane is crossed during
the flow evolution. A mixed rarefaction wave is formed, composed by a transonic rarefaction
fan connected to a rarefaction shock propagating to the right. This rarefaction shock occurs
when theG values become negative. On the other hand, the compression shock propagating
toward the low pressure side satisfies the Rankine–Hugoniot conditions, and it is therefore a
classical shock even if it connects two states with different sign ofG. This indicates that the
crossing of theG = 0 boundary cannot be taken as a sufficient condition for the existence
of mixed waves.

The DG2 case is a typical example of nonclassical behavior, since the initial gas states
belong entirely to the nonconvex region and moreover the fundamental derivative remains
negative in the whole flow field during the flow evolution. A rarefaction shock and a con-
tinuous compression fan are observed in Fig. 6.
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FIG. 8. Numerical solution of the Riemann problem for test case DG3. Solution at the dimensionless time
t∗ = 0.2,1t∗ = 1× 10−3.
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FIG. 9. Mixed rarefaction wave of case DG3 at timet∗ = 0.48 on a 1000-node grid. Density profile (right)
and entropy difference×1000 (center and right). The entropy difference is defined ass(T, v)/s(T̀ , v`)− 1.

The comparison with Davis method yields very similar results also for the DG1 and
DG2 cases. Differences may be appreciated only locally on the wave resolution (Fig. 7). As
expected, the proposed upwind scheme behaves better than the artificial viscosity scheme in
capturing contact discontinuities, which appear sharper using the proposed approach. The
above becomes more evident by reducing the spatial resolution.

The last test case, DG3 (Fig. 8), presents however a subtle but important difference
between Davis and present results. This case has an initial left, high pressure state lying in
theG < 0 region, while the right state is well within the convex region. The gas expansion
starts as a rarefaction shock that turns into a small rarefaction fan once theG = 0 boundary
is crossed. In Fig. 9, an enlargement of the mixed wave as computed by the Davis scheme
and the present scheme is shown. The difference in the density profile can be explained
by examining the entropy production through the rarefaction shock. The Davis scheme
computes a negative (nonphysical) entropy difference, while the present scheme is found to
satisfy the entropy condition. As a result, the isentropic rarefaction fan occurs along different
isentropes for the two schemes, thus leading to different density profiles. Moreover, for the
same reason, the speed of the rarefaction shock as computed by the present scheme is higher
than the one obtained from the Davis scheme.

Comparisons with other standard extensions of Roe scheme and, in particular, with
the one proposed in [33] showed almost no differences with present results. It could be
possible that a different behavior between the present method and other extended Roe
schemes may be found in the simulation of flow fields that include phase transition. In
fact, as pointed out in [31], Roe linearizations based on the quasi-Jacobian form may break
down in the two-phase region due to inconsistency among intermediate thermodynamic
quantities.

As a final remark, we notice that LeVeque’s entropy fix [18], originally considered in
the present scheme, has been found to fail in the presence of a negative/positive transonic
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FIG. 10. Density contours in the kinematic plane (x, t) for classical (left) and nonclassical transonic rarefac-
tion.

rarefaction (case DG1). This difficulty is caused by the nonclassical character of the rare-
faction waves in that Riemann problem (see Fig. 10), which is extraneous to LeVeque’s
entropy fix developed for classical transonic rarefactions. The difficulty has been easily
circumvented by replacing LeVeque’s entropy fix with the standard entropy fix of Harten
and Hyman [15].

8. CONCLUSIONS

In the present work, the linearization procedure of Roe for the Euler equations has been
extended from the ideal gas to a gas governed by the van der Waals equations of state. The
proposed method assumes an intermediate state as the unknown of the linearization problem
and, differently from standard procedures for the ideal gas, requires the determination of
an intermediate densityin addition to the intermediate velocity and total enthalpy of the
original method of Roe. Such a density is needed to evaluate the eigenstructure of the
Jacobian matrix, due to the nonideal form of the equations of state employed. The choice of
the Jacobian form ensures the automatic satisfaction of the consistency and hyperbolicity
properties of the scheme. Pressure derivatives with respect to the conservative variables
appearing in the Roe (Jacobian) matrix are not assumed to be additional unknowns, but
are merely considered as functions of the intermediate state given by the variables density,
velocity, and total specific enthalpy. The originality of the proposed method lies in the
introduction of a convenient supplementary condition which decouples the determination
of the intermediate velocity and enthalpy—given by the standard Roe average—from the
determination of the intermediate density. Thanks to the analytical form of the van der Waals
thermodynamics, a third-order algebraic equation for the intermediate density is obtained,
which directly gives the solution of the linearization problem in terms of the Roe averaged
velocity and total enthalpy and of the jumps in the density, pressure, and internal energy
per unit volume.

By virtue of the segregation of all the aspects dependent on the thermodynamic equations
of state into a single equation for the intermediate density, the present method can be
easily extended to deal with more complex physical systems such as, for instance, accurate
thermodynamic models for dense gases or chemically reacting gases in local thermodynamic
equilibrium.
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APPENDIX A: SOLUTION OF THE LINEARIZATION PROBLEM

In this appendix, following [14], system (5.4) is derived from (5.2) by augmenting it with
the supplementary equation (5.3). Particular cases in which the outlined solution breaks
down due to the division of vanishing quantities are dealt with in the next section.

Let us first rewrite system (5.2), namely,



(1ρ)

(
m̃

ρ̃

)2

− 2(1m)
m̃

ρ̃
+1

(
m2

ρ

)
+ (1P −∇w5(w̃) ·1w) = 0,

−(1ρ)m̃
ρ̃

Ẽt+5(w̃)
ρ̃

+ (1m)
Ẽt +5(w̃)

ρ̃
+ (1Et)

m̃

ρ̃
+ m̃

ρ̃
∇w5(w̃) ·1w

=1
(

m

ρ
(Et +5)

)
,

(A.1)

in a more convenient form. We now suppose that1ρ = ρr − ρ` and1m= mr −m` are
both different from zero; the particular cases of data for the Riemann problem not fulfilling
these conditions will be dealt with separately later on. Then, provided that

1m− m̃

ρ̃
1ρ 6= 0, (A.2)

the one-parameter family of solutions is obtained from the following system

m̃

ρ̃
= 1

1ρ

{
1m±

√
(1m)2− (1ρ)

[
1

(
m2

ρ

)
+ (1P −∇w5(w̃) ·1w)

] }
,

Ẽt +5(w̃)
ρ̃

=
(
1m− m̃

ρ̃
1ρ

)−1[
1

(
m

ρ
(Et +5)

)
− m̃

ρ̃
(1Et +∇w5(w̃) ·1w)

]
,

(A.3)

where the first equation has been rewritten by exploiting the quadratic solution formula.
This is a system of two coupled equations in the three unknowns(ρ̃, m̃, Ẽt)T = w̃. We
notice that the coupling is due to the presence of the unknown ˜w in the function5(w̃) on
the left-hand side of the second equation, and to the presence of the ratiom̃/ρ̃ and of the
gradient∇w5(w̃) on the right-hand sides.

We now substitute the supplementary equation (5.3), namely,

∇w5(w̃) ·1w = 1P, (A.4)

into the above system, so that the first equation of system (A.3) can now be written so as to
express the ratiõm/ρ̃ as

m̃

ρ̃
= 1

1ρ

[
1m±

√
(1m)2− (1ρ)1

(
m2

ρ

) ]
. (A.5)

The equation above has two different solutions and hence we have to choose the
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physically relevant one. Let us first consider the discriminant in (A.5). By substituting
the variations1m= mr −m` and1ρ = ρr − ρ`, the condition for a positive discriminant
reads

m2
r − 2mr m` +m2

` − (ρr − ρ`)
(

m2
r

ρr
− m2

`

ρ`

)
≥ 0,

that can be written as the ratio of two quantities

(ρ`mr − ρr m`)
2

ρ`ρr
≥ 0. (A.6)

The denominator is always positive whereas the numerator is only nonnegative. Therefore,
Eq. (A.5) has two real distinct solutions except when

m`

ρ`
= mr

ρr
,

in which case the root is double. This special situation, which was excluded by imposing
condition (A.2), corresponds to a constant velocity across the left and right states and will
be dealt with in the following.

Considering now a positive discriminant, the solution of the quadratic equation (A.5) for
the ratiom̃/ρ̃ may be written as

m̃

ρ̃
= 1

ρr − ρ`

{
mr −m` ± ρ`mr − ρr m`√

ρ`ρr

}
. (A.7)

The solution obtained by taking the negative sign in the expression reads

m̃

ρ̃
=

m`√
ρ`
+ mr√

ρr√
ρ` +√ρr

, (A.8)

whereas, by taking the positive sign in (A.7), we have

m̃

ρ̃
=

m`√
ρ`
− mr√

ρr√
ρ` −√ρr

.

This result is rejected since it leads to an infinite value for the ratiom̃/ρ̃ when1ρ → 0, if
m` andmr are fixed.

The resulting system of three equations now reads



∇w5(w̃) ·1w = 1P,

m̃

ρ̃
=

m`√
ρ`
+ mr√

ρr√
ρ` +√ρr

,

Ẽt +5(w̃)
ρ̃

=
1
(

m
ρ
(Et +5)

)
− m̃

ρ̃
1(Et +5)

1m− m̃
ρ̃
1ρ

.
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By rewriting the last term in the right-hand side of the energy equation in the slightly
different form,

Ẽt +5(w̃)
ρ̃

=
1
(

mEt+5
ρ

)
− m̃

ρ̃
1
(
ρ Et+5

ρ

)
1m− m̃

ρ̃
1ρ

,

and by substituting the value of̃m/ρ̃ given by (A.8) into the equation above we obtain the
system

∇w5(w̃) ·1w = 1P,

m̃

ρ̃
=

m`√
ρ`
+ mr√

ρr√
ρ` +√ρr

, (A.9)

Ẽt +5(w̃)
ρ̃

=
Et
`
+5(w`)√
ρ`
+ Et

r+5(wr )√
ρr√

ρ` +√ρr
,

that is, system (5.4).

APPENDIX B: SPECIAL CASES OF ROE LINEARIZATION FOR NONIDEAL GASES

The solution of the linearization problem for the Euler equations described above may
break down due to the division by vanishing quantities. This occurs either when the den-
sity is the same in the left and right states or when the term1m− m̃

ρ̃
1ρ is equal to

zero. The particular case1ρ = 1E = 0 is trivial since thermodynamics implies1P = 0
and therefore, being the supplementary equation an identity, the intermediate density is arbi-
trary, the other two variables being recovered as solutions of the second and third equations
of system (A.9).

B.1. The Case∆ρ = 0, ∆m 6= 0

If 1ρ = 0, that is,ρ` = ρr = ρ`r , the linearization problem consisting of system (A.1)
augmented with the supplementary equation (A.4) simplifies to

5m(w̃)1m+5Et(w̃)1Et = 1P,[
2m̃

ρ̃
+5m(w̃)

]
1m+5Et(w̃)1Et = 1

(
m2

ρ
+5

)
, (B.1)

[
1

ρ̃

(
Ẽt +5(w̃))+ m̃

ρ̃
5m(w̃)

]
1m+ m̃

ρ̃
(1+5Et(w̃))1Et = 1

(
m

ρ
(Et +5)

)
.

The first and the second equations give

2m̃

ρ̃
1m= 1

(
m2

ρ

)
−→ m̃

ρ̃
= m` +mr

2ρ`r
.

By substituting the ratiõm/ρ̃ into the third equation of (B.1) we obtain

Ẽt +5(w̃)
ρ̃

1m= Et
` +5(w`)+ Et

r +5(wr )

2ρ`r
1m.
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Therefore, if1m 6= 0, the system becomes

5m(w̃)1m+5Et(w̃)1Et = 1P,

m̃

ρ̃
= m` +mr

2ρ`r
,

Ẽt +5(w̃)
ρ̃

= Et
` +5(w`)+ Et

r +5(wr )

2ρ`r
.

Introducing now the change of variablew = (ρ,m, Et)→ v = (ρ, u, ht), we obtain

ũ = u` + ur

2
, h̃t = ht

` + ht
r

2
,


∂P(Ẽ, ρ̃)

∂E
1E = 1P, (B.2)

Ẽ + P(Ẽ, ρ̃)

ρ̃
= h̃t − ũ2

2
,

where the relation for the energỹE has been written to close the system. We notice that,
althoughρ` = ρr = ρ`r , the intermediate density ˜ρ, solution of the supplementary equation,
is in general different fromρ`r .

B.2. The Case∆ρ = 0, ∆m = 0

In the very particular case1ρ = 0 and1m= 0, the linearization problem simplifies
further to 

5Et(w̃)1Et = 1P,

5Et(w̃)1Et = 1P, (B.3)

m̃

ρ̃
(1+5Et(w̃))1Et = m`r

ρ`r
1(Et +5),

that is, the supplementary equation and the equation stemming from the conservation of
momentum are the same. Eliminating the quantity5Et(w̃)1Et in the last equation, we
obtain the single relation

m̃

ρ̃
1(Et +5) = m`r

ρ`r
1(Et +5),

which gives immediately

m̃

ρ̃
= m`r

ρ`r
,

since1(Et +5) 6= 0. Therefore, in this particular case the intermediate state ˜w is the
solution of the system 

5Et(w̃) = 1P

1Et
,

(B.4)m̃

ρ̃
= m`r

ρ`r
,
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which has a one-parameter family of solutions. As remarked, in this very special case, the
momentum equation is coincident with the one resulting from the auxiliary condition

∇w5(w̃) ·1w = 1P,

introduced eventually to select a unique intermediate state and hence an additional condition
is to be given to define both the intermediate state ˜w and the Roe matrix completely.
Introducing now the change of variablew = (ρ,m, Et)→ v = (ρ, u, ht), and fixing the
available parameter by selecting the standard average of the enthalpy, namely,

h̃t =
√
ρ`ht

` +
√
ρr ht

r√
ρ` +√ρr

= ht
` + ht

r

2
,

we have 
ũ = u` + ur

2
, h̃t = ht

` + ht
r

2
,

∂P(Ẽ,ρ̃)
∂E 1E = 1P,

Ẽ+P(Ẽ,ρ̃)
ρ̃

= h̃t − ũ2

2 ,

(B.5)

where again the relation for the energyẼ has been written to close the system. To conclude,
we notice that, due to the particular choice for the average total enthalpy, the intermediate
state obtained in this special case has the same form as in the previous section.

B.3. The Case∆m = m̃
ρ̃
∆ρ, ∆ρ 6= 0, ∆m 6= 0

We now go back to considering the situation associated with the breakdown in the solution
of the energy equation in (5.4), namely the condition

1m− m̃

ρ̃
1ρ = 0. (B.6)

In the following, one can assume1ρ 6= 0 since the very special case1ρ = 1m= 0 has
been already considered in the previous section.

The condition1m= m̃
ρ̃
1ρ corresponds to the vanishing of the square root in Eq. (A.5)

so the intermediate state is defined by the following set of three equations easily recovered
from the general system (A.1)

∇w5(w̃) ·1w = 1P,

m̃

ρ̃
= 1m

1ρ
, (B.7)

m̃

ρ̃
1(Et +5) = 1

(
m

ρ
(Et +5)

)
.

By eliminatingm̃/ρ̃ from the second and the third equation we obtain the relation

1m

1ρ
1(Et +5) = 1

(
m

ρ
(Et +5)

)
,

in which no unknown appears and that must therefore be an identity for the system to be
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solvable. By evaluating the variations appearing in the relation above we have

mr −m`

ρr − ρ`
(
Et

r − Et
` +5(wr )−5(w`)

) = mr

ρr

(
Et

r +5(wr )
)− m`

ρ`

(
Et
` +5(w`)

)
,

which is a trivial identity for any pressure function5(w) if one can show that

mr −m`

ρr − ρ` =
mr

ρr
and

mr −m`

ρr − ρ` =
m`

ρ`
.

These two relations are satisfied identically provided that

m`

ρ`
= mr

ρr
,

which is indeed the case we are considering.
Therefore, in the casem`/ρ` = mr /ρr , the third equation is identically satisfied and the

problem simplifies to 
∇w5(w̃) ·1w = 1P,

(B.8)m̃

ρ̃
= 1m

1ρ
,

so that there is a one-parameter family of solutions and therefore an additional con-
dition should be imposed in this case to determine the intermediate state completely.
If we again consider the change of variablew = (ρ,m, Et)→ v = (ρ, u, ht), and
fix the available parameter by selecting the arithmetic average of the enthalpy, we have

ũ = u`r , h̃t = ht
` + ht

r

2
,

∂P(Ẽ, ρ̃)

∂E
1E + ∂P(Ẽ, ρ̃)

∂ρ
1ρ = 1P,

Ẽ + P(Ẽ, ρ̃)

ρ̃
= h̃t − ũ2

2
.

(B.9)
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